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The simultaneous occurrence of upper (UCST) as well as lower critical solution temperatures (LCST) in 
polymer blends can be explained in terms of a refined version of the Prigogine-Fiory-Patterson theory. 
A generalized interaction parameter is introduced which is ruled by three contributions: (i) the segmental 
interaction, (ii) the free-volume effect, and (iii) the size effect represented by a parameter p. The gap between 
LCST and UCST depends highly on the parameter p. With increasing size effect, the UCST and LCST 
approach and, finally, merge into an hourglass-shaped binodal. 
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INTRODUCTION 

The phase behaviour of any mixture at constant pressure 
P and temperature T is directed by the Gibbs free energy 
of mixing, AG M, which is given by: 

AG M = A H  M - TAS  M (1) 

where AH u and AS u are the enthalpy and the entropy 
of mixing, respectively. According to the second law of 
thermodynamics, two components will only mix if the 
Gibbs free energy of mixing is negative: 

AG M < 0 (2) 

Furthermore, the condition for phase stability in a binary 
mixture of composition ~b (volume fraction) at fixed 
temperature and pressure is" 

c~q ~2 )e,r>0 (3) 

To explain miscibility and lower critical solution 
temperature ( L C S T )  behaviour in polymer blends, one 
has to consider three contributions to the Gibbs free 
energy of mixing 1,2; the combinatorial entropy of mixing; 
the intermolecular interaction; and the free-volume effect 
arising from the different thermal expansion coefficients 
of the two components. In the context of the Flory- 
Huggins theory 3 it can be shown that the combinatorial 
entropy of mixing is proportional to 1/r of each com- 
ponent where r is the number of segments in a chain 
molecule. Hence, one may conclude that the combinatorial 
entropy of mixing becomes insignificant at high molar 
masses. The free-volume contribution is always positive 
and increases as a function of temperature. Therefore, 
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AGU< 0 required for mutual miscibility of polymers can 
only result from interactions between them leading to a 
negative contribution to the Gibbs free energy of mixing. 
In the case of homopolymers this is associated with 
specific interactions. The increase of the free-volume term 
with temperature results in a L C S T  which is typical for 
miscible polymers. 

As shown recently 4-7 blends in which at least one of 
the components is a random copolymer exhibit miscibility 
and L C S T  behaviour in the absence of specific inter- 
actions. In that case misciblity may be enhanced by the 
repulsion of dissimilar segments in the random copolymer 
chain4,5,s, 9. 

Some miscible polymer blends display not only L C S T  
behaviour but also phase separation at low temperatures. 
The simultaneous occurrence of a L C S T  as well as an 
upper critical solution temperature ( U C S T )  in blends of 
high-molar-mass polymers is expected to be rare. Never- 
theless, it is a general phenomenon. However, in most 
of the cases the U C S T  shifts below the glass tran- 
sition temperature and, therefore, is not accessible 
experimentally. 

The existence of both an U C S T  and L C S T  has been 
found in some blends of high-molar-mass polymers: poly- 
(butadiene)/poly(styrene-co-butadiene) 1°, poly(acrylo- 
nitrile_co.styrene )/poly(acrylonitrile_co.butadiene )11 and 
poly(methyl methacrylate)/poly(vinylidene fluoride)12; 
and also in blends of polystyrene and a random copolymer 
of carboxylated poly(2,6-dimethyl- 1,4-phenylene oxide)13. 

The theory sketched above cannot explain satis- 
factorily the combined occurrence of an U C S T  and 
LCST.  In this paper we present a refined version of the 
Prigogine-Flory-Patterson theory 2,~4,15 which results in 
a straightforward interpretation of U C S T  and L C S T  
behaviour. 
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THE REFINED THEORY 

In the usual version the theory explains the LCST 
behaviour of miscible polymers. The aim here is an 
adequate refinement of the theory to understand the fact 
that some blends exhibit additionally an UCST. 

In the Prigogine theory ~4 the basic quantities charac- 
terizing the thermodynamic state of a system are the 
reduced temperature (7"), volume (~') and pressure (P) 
defined by: 

~F- T/T* P'-  V/V* P=-P/P* (4) 

where the starred quantities are constant reference 
parameters. Expressing the potential energy 8(r') of a pair 
of segments belonging to r-mers by the general function 

with two scale factors e* and r* characteristic of the 
molecular species: 

8(r') = --8*~(r'/r*) (5) 

then we can represent the starred quantities in (4) by the 
molecular parameters as follows 

T*=qe*/ck V* =r r  .3 P* =qs*/rr .3 (6) 

The scale factors 8" and r* represent the coordinates of 
the minimum of the potential function 8(r'); r is the 
number of segments in a chain molecule; 3c is called the 
number of external degrees of freedom of an r-mer 
because it depends only on the environment of the chain. 
When z is the coordination number of the lattice then 
qz represents the number of the nearest neighbours of the 
r-mer or zq/r the nearest neighbours of a segment. 

In generalization of (5) one may introduce the average 
interaction of a segment (say A) with the neighbour 
segments at a distance r' for the mixture in terms of the 
volume fraction 05: 

(8*)((r'/(r*)) = 05A<8~A)((F'/(r~A)) + 05B(e~B)((r'/(r~B)) 
(7) 

As can be seen the interaction energy <SA(r')) is supposed 
to be of the same form as in (5). Henceforth, the quantities 
<8") and (r*)  are average composition-dependent 
parameters. Using a (6-12) law for the potential function 
8(r') the parameters (sA*) and (r~) are given by: 

(05A<g~A><r~A> 6 + 05B<8~s><r~a>6) 2 <~*>- 
* * 12 05A<SAA> <rAA> + 05B<8*B><rIB) 12 (8) 

_ (05A(r*A) '2 + 05B<F~B> 12~ i/6 

Similar expressions exist for (8") and (r*).  Assuming 
now that components A and B are random copolymers 
of monomers 1 and 2 and of 3 and 4, respectively, where 

and /3 are the mole fractions of 1 in A and 3 in B, 
respectively, then it follows that: 

2 * ,6 __~2~, ~.,6"12 
--{X)812r12-~- (1 - ,  o22.22_1 [~ 81~rll+2~(l * ,~ 

( / ~ A ) -  ~rv2e ,o11.11 .,12 + 20~(1- a)e12rl 2 ,  ,,2 + [l _ , .~2~ , . .  ~ ,  t'22"22~*12 (9) 

/~2r~"~ + 2~(1 - ~)r*2 ~ + (1 -- ~x)2r*22\ U6 

( r ' A ) =  t ~2r~+2~(  1 ~ ) ~ + 0 - - - ~  ) 

with analogous expressions for (8*B) and <r%). Further- 
more, we have: 

( 8 ~ B >  = 0~fl8~3 q- (1 - -  f l )@8~4 q- (1 - -  @)f l8~3 -{- (1 - -  @)(1 - -  f l ) 8~4  

(1o) 

~ ,12 ~/Jr13 + ' "  + (1 -~ ) (1  -/3)r~=~ 1/6 
<r 'B> = - ~  \=/3r13+ +(1-~)(1-/3)rt~} 

Now we may express the average potential parameters 
in terms of the quantities 5i, 5,'., Xu and R u as defined in 
the Appendix. Second-order terms are only taken into 
account for (e*). After (9) and (10) it follows that: 

(g*A)/e*l = 1 +8 (rAA>/r11 = 1 +PA (11) 

* * ( 1 2 )  (eBB)/el 1 = 1 + r/ (r*B)/r* 1 = 1 + PB 

XAB = 2/(1 +8) (13) 

Again, the quantities e, q, PA and PB are defined in the 
Appendix. According to (8) it follows for (8"),  <r*), (8") 
and (r*)  that: 

(8")/e~1 = 1 + (05B/2)F -- 05BXAB -- 9p205A05B (14) 

(r~)/r*, = 1 + (pa/2)(1 + 05A)+ (pB/2)05B + K05B (15) 

<8~ >/8~1 = 1 + (05B + 05A/2)F -- 05AXAB -- 9pE05A05B (16) 

(r*)/r*l = 1 + (pA/2)05A + (pB/2)(1 + 05B)+ K05A (17) 

with 

F -  ( q -  8)/(1 +e) (14a) 

P ~ fiB -- PA + 2/3(1 -/3)R34 - 2~(I - ~)R 12 (14b) 

g -~  c~(l --o0R12 q-/3(1 --fl)R34--o~flR13--o~(1 - f l )R14  

- -  (1 - -  ~ ) / 3 R 2 3  - -  (1 - -  oQ(1 - - / 3 ) R 2 4  ( 1 5 a )  

In the context of the Prigogine theory and assuming 
random mixing, the configurational partition function of 
the mixture takes the form: 

Q - (NA + NB)! [<r*>3q(<'~A>, < ~/A))] cArANA 
NA! NB! 

x [<r*>aq(<7~B), ( PB))]~S'"NB (18) 

where NA, NB are the numbers of polymer molecules in 
the system and q represents the partition function for a 
segment. The Helmholtz free energy of mixing per mole 
of segments is: 

AF u = F - (05AFA + 05BFB) (19) 

From (18) one can deduce the free energy of mixing. 
Omitting for a moment the combinatorial entropy of 
mixing, it follows that: 

AFM/RT = - ~ {3ci05iln((r*)/(r*)) 
i=A,B 

+c,05,[ln q((T,), ( V , ) ) - l n  q((~F,,>, (Vil))]} (20) 

Now we ma~ expand (20)in powers of 1/(7") and (~ ' )  
around In q((TAA), (VAA)) a t /3=0 .  In the following we 
neglect structural effects, i.e. CA=C B and qA=qw After 
some calculation we arrive at: 

R T -  RT  - R T  0 5 A O A + 0 5 " 0 " - - q ) a t ~ - - I  

Cw [05~o~ + 05.o2.- " / <8..> 
2R ~bBt<8*A> 1) 2 ] 

eP f <8-.> _ 1~ 
/ 

- 1  

J 

POLYMER, 1989, Vol 30, May 889 



UCST and LCST behaviour in blends." H.-W. Kammer et al. 

2<7.AA > CA ~ A 

--  (~l~B(< ~'BB> -- < VAA>) 2- ] 

_ 3CAE~bA in ( <r*> ~+ In( <r*> ~] 
\<rXA>/  CB \ < r % > / J  

(21) 

where 

o.=((#'>- 1) a,-((?,>-<P,,>) '-\<~*> 
The molar configurational energy U A, the heat capacity 

CVA and the other quantities occurring in (21) can be 
replaced by the reduced volume and equation-of-state 
parameters using a suitable equation of state. According 
to Flory ~5 the quantities V, 7", /3 are linked by the 
following equation of state: 

1 1 5 - - _ _  
F "u3 - 1 

At/3 = 0, it follows that: 

7 ~ - m  

Employing 

c3 In q PV* 
c ~ ,  - R T  

one obtains 

U A 1 

R T TA V A 

~ 1 / 3  1 
~,4/3 

1 
p2 (22) 

and c T a In q _ U 

(22a) 

t~T R T 

CVA Vk/3 
- -  = CA 4_  (23) 

R ~'r k/3 

The calculation of t3_o/t3 ~ and d/3/d P is straightforward. 
From (20) an equation of state can be deduced. Expanding 
this equation of state in terms of pure component A at 
/3=0 one can calculate the quantities f~ occurring in 
(21). It follows: 

~'A( ~"k 13 -- 1) CBCB~'A( <r~>3 -- 1 )  
h A - -  i__~ik/3 i=~A,B ~)`0`+ k ( ~ A ~  3 

~'~B-- ~__ ~/.k/3 Z ~)iOi--CACA~/A -- 1 (24) 
I = A , B  

~'A(~'~,/3- 1) (<e'n> 1) 

Finally, inserting the expressions (14)-(17) and (23), 
(24) into (21), neglecting higher than second-order terms 
in XAS, F and p and adding the combinatorial entropy 
of mixing one gets for the Gibbs free energy of mixing: 

A G  M 
- -  = 2CACACB 
R T  

/ ~,1/3 
X r A {XAa+9p2 ½[F/2+XAB(C~a_~A)] 

~ r/ l /3_ 1 

x [3(p B -  PA)-- 3K(¢B - (~A)'I} 

A t 3 - -  
q'- (pk/3__ 1) 2 9[(Pa--PA)--2K(qhB--q'~A)]2 

p~/3 
+ 4(~- ~,)/3) r¼F2 + FXAB(1 + 6¢s) 

- x~,B(1 + 4~ACB)] 

- 3[K--~6(pB-- PA) 2 --¼g(Pn-- PA) 

X (¢ .  -- ~bA)-- K 2 / 4 ] )  

+ (~bA/rA) In ~b A + (¢n/ra) In ~a (25) 

To a good approximation one can assume that the 
quantities R u vanish. Furthermore, with an inaccuracy 
of less than 1% one can neglect the second-order terms 
in XABp, XABF and X2B. As a result (25) simplifies to: 

r p1/3 / ~_ "~ 
A T 9pZ AGM=2CACA¢S|~(XAB_ ~ Pk/3 

R T  L.--A -- " \ ~/rk/3 -- 1 J 
r"k/~ ] 

3- -  --A 

-4- (~bA/rA) In (~A + (~)B/FB) In es (26) 

12 

where 
T __ 9 2 XAB = XAB q'- ~p - -  3Fp 

/ 

• " / 2  o: ,,.. 

\ °.• 
. . .~. '" 

..°," 

(26a) 

'"" ""'°'°'" ~ ' "  4 

4 \ 
\ 

~ 3  

% 
x 0 J 
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Figure ] Variation of the interaction (1), free-volume (2) and size- 
effect (3) contributions to the parameter X (4) as a function of reduced 
temperature according to equation (26). The used parameters are: 

T _ XAB----1 X 10 -a,  F 2 = 6 x  10 -4 , p 2 = 3 x  10 -5 . The combinatorial 
entropy of mixing at ¢ = 0 . 5  and r =  1000 is indicated by the broken 
straight line 

; ,'0 
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DISCUSSION 

In equation (26) a generalized interaction parameter X 
is defined via 

AGU/R T = q~A~aX + (q~A/rA) In q~A + (~B/rs) In q~a 

As can be seen, three effects contribute to the interaction 
parameter X: (i) the segmental interaction represented 
by the parameter XAB; (ii) the free-volume effect arising 
from the different free volumes of the components and 
represented by the parameter F; (iii) the size effect 
resulting from the differences in the sizes of the segments 
and represented by the parameter p. We should notice 
here that the volume of mixing calculated in the same 
approximation as the Gibbs free energy of equation (26) 
also depends on the parameters XAa , r and p. When 
there is no size effect, i.e. p = 0, and XAB < 0, F > 0, then 
the volume of mixing A V M is negative. With increasing 
p the sign of AV M will change whereas AG M keeps the 
same sign. The three contributions as a function of 
reduced temperature are shown in Figure 1. Since XAB 
is negative the interaction term is also negative and 
favours mixing. However, it dominates the unfavourable 
free-volume and size-effect terms only within a certain 
range of temperatures. Therefore, L C S T  as well as U C S T  
occur .  

From equation (26) it follows that the parameter X is 
a free-energy parameter containing an enthalpic part X n 
and an entropic part Xs: 

X = X n  + X s X n =  - T ~X/t3T (27) 
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Figure 2 Representation of the parameter X and its enthalpic and 
entropic parts, Xn and X s, respectively, versus reduced temperature as 
calculated from equations (27) and (28). The parameters are chosen as 
in Figure I 
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Figure 3 Binodals as calculated from equation (26). The parameters 
are: p=0  (0), p 2 = l x 1 0 - 5  (1), p2=2x  10-5 (2), p2=3x  10-5 (3), 
pZ=3.1 x 10 -5 (4); CA=2; other parameters as in Fioure I 

Applying equation (26) we get 

X n  ~ / 3  X~AB ( 2 -  --A~l/3~'l /3)--A p2 

--(4--Vk/3)(p1/3--1 ) 3 + (~--~'~,/3)(~,/3--1)2 8- 

(p~/3_ 1)p~/3 7F2 

2CA 

(28) 

Notice that X n ~ A H  ~ and X s ~ - A S  M. The variation 
of the different terms with respect to reduced temperature 
is depicted in Figure 2. At high temperatures the 
temperature dependence of X n and X s is approximately 
the same as at p = 09. At low temperatures, however, a 
completely different behaviour occurs for p 4: 0. At p = 0, 
X n decreases with decreasing temperature and approaches 
X whereas X s levels off to a small positive value• Here, 
X n increases because the term is proportional to p2, 
which acts as an additional repulsion at low temperatures, 
leading to an increase of the parameter X. As a result, 
the LCS T behaviour is an entropy-driven process whereas 
the U C S T  is caused by the enthalpic contribution 
associated with the size effect• 

POLYMER, 1989, Vol 30, May 891 



UCST and LCST behaviour in blends: H.-W. Kammer et al. 

x 5 

O n e  
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B 

Figure 4 Miscibility map of a homopolymcr/copolymcr blend (~ = 1) 
as calculated by employing equation (26). The used parameters arc: 

- 3  " " • • X X = 9 6 x 1 0  , X 4 = 0 0 3  X 4 = 0 0 8  6~=6,,=0.065 63=64=5.5 
3 " " ' . . "  . . '  . ' .  

I~)- a; cA = 2;r  = 1~)~; @ = 0.5. ~lsclbdlty occurs only reside the curve 

Now, phase diagrams can be deduced from the Gibbs 
free energy of mixing (equation (26)). Results are shown 
in Figure 3. As can be seen the phase behaviour varies 
dramatically with the size parameter p. At p =0  only 
L C S T  behaviour occurs. With increasing p the gap 
between L C S T  and U C S T  diminishes more and more; 
finally, an hourglass-shaped phase diagram results. 
Remarkably, extremely small changes in the parameter 
p alter the phase behaviour from U C S T / L C S T  behaviour 
to immiscibility, as is demonstrated by curves 3 and 4 in 
Figure 3. Furthermore, one may establish that simultane- 
ously experimentally accessible L C S T  and U C S T  in 
one system are rare because the position of the binodals 
is very sensitive to the ratios p2/XAB , p/F and XAB/F 2 
and, as indicated above, small changes in the ratios can 
shift the UCS T far below the glass transition temperature. 

The same treatment may also be used to account for 
miscibility and L C S T / U C S T  behaviour in blends con- 
taining random copolymers. As a matter of fact, the 
positions of L C S T  and U C S T  depend highly on the 
copolymer composition. Therefore, for blends containing 
copolymers of varying composition, one observes different 
binodals. The binodals may be employed to map the 
miscibility in copolymer/homopolymer blends at constant 

blend composition as a function of copolymer compo- 
sition. An example for a T-fl plot as calculated on the 
basis of equation (26) is shown in Figure 4. Miscibility 
is confined to a certain region of copolymer composition. 
We should notice here that the experimental observation 
of miscibility-immiscibility boundaries as a function of 
copolymer composition permits the quantitative determi- 
nation of the individual segmental parameters occurring 
in equations (A6)-(A10). 

In conclusion, the simultaneous occurrence of a L C S T  
and an U C S T  is associated with positive contributions 
to the Gibbs free energy of mixing due to the free-volume 
effect and the differences in segmental sizes, respectively, 
whereby the latter effect is most striking at low tempera- 
tures. When the size effect is negligible only L C S T  
behaviour is experimentally observable. The complex 
phase behaviour of polymer blends can be explained 
satisfactorily in terms of a refined equation-of-state 
theory. 
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APPENDIX 

It is useful to introduce the following notations: 
D • • (~i -- ~ii/F'l 1 -- 1 (A 1) 

i=2,  3,4 
r * * 6i -- rii/rl 1 -- 1 (A2) 

i = 1 , 2 , 3  
, 1 , , , ( A 3 )  Xij=(1/811)[~(Sii "~-Sjj)--Sij ] i # j ;  j = 2 ,  3, 4 

_ , 1 , , , R i j -  (l/r11)[~(rii + rjj) -- rij ] (A4) 

Xa .  = (1/(e*A))[½((e*A) + (~*B))-- (e 'B)] (A5) 

Furthermore: 

e= (1 -c()62-2c((1 - c 0 g 1 2 -  18c((1 - c()(6~) 2 (A6) 

PA = (1 -- ~)6~ -- 2~(1 -- ~0R12 (n7) 

=fl63 + (1 - fl)6 4 -  2fl(1 -,8);(34- 18fl(1 - fl)(6~3 + 6~.) 2 
(A8) 

pB=flr"a+(1--f l)6~--2fl(1--f l)R34 (A9) 

--  (X(I --  0(),~ 12 --  f l ( l  --  fl)X34 (A 10) 
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