Upper and lower critical solution temperature behaviour in polymer blends and its thermodynamic interpretation

Hans-Werner Kammer*

Department of Chemistry, University of Technology, Mommsenstrasse 13, DDR-8027 Dresden, GDR

and Takashi Inoue and Toshiaki Ougizawa

Department of Organic Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan (Received 30 August 1988; accepted 21 November 1988)

The simultaneous occurrence of upper *(UCST)* as well as lower critical solution temperatures *(LCST)* in polymer blends can be explained in terms of a refined version of the Prigogine-Fiory-Patterson theory. A generalized interaction parameter is introduced which is ruled by three contributions: (i) the segmental interaction, (ii) the free-volume effect, and (iii) the size effect represented by a parameter ρ . The gap between *LCST* and *UCST* depends highly on the parameter p. With increasing size effect, the *UCST* and *LCST* approach and, finally, merge into an hourglass-shaped binodal.

(Keywords: *UCST; LCST;* **blends; thermodynamics;** miscibility)

INTRODUCTION

The phase behaviour of any mixture at constant pressure P and temperature T is directed by the Gibbs free energy of mixing, ΔG^M , which is given by:

$$
\Delta G^{\mathsf{M}} = \Delta H^{\mathsf{M}} - T\Delta S^{\mathsf{M}} \tag{1}
$$

where ΔH^M and ΔS^M are the enthalpy and the entropy of mixing, respectively. According to the second law of thermodynamics, two components will only mix if the Gibbs free energy of mixing is negative:

$$
\Delta G^{\mathsf{M}} < 0 \tag{2}
$$

Furthermore, the condition for phase stability in a binary mixture of composition ϕ (volume fraction) at fixed temperature and pressure is:

$$
\left(\frac{\partial^2 \Delta G^M}{\partial \phi^2}\right)_{P,T} > 0
$$
 (3)

To explain miscibility and lower critical solution temperature *(LCST)* behaviour in polymer blends, one has to consider three contributions to the Gibbs free energy of mixing^{1,2}; the combinatorial entropy of mixing; the intermolecular interaction; and the free-volume effect arising from the different thermal expansion coefficients of the two components. In the context of the Flory-Huggins theory³ it can be shown that the combinatorial entropy of mixing is proportional to *1/r* of each component where r is the number of segments in a chain molecule. Hence, one may conclude that the combinatorial entropy of mixing becomes insignificant at high molar masses. The free-volume contribution is always positive and increases as a function of temperature. Therefore,

0032-3861/89/050888~)5503.00

© 1989 Butterworth & Co. (Publishers) Ltd.

888 POLYMER, 1989, Vol 30, May

 ΔG^{M} <0 required for mutual miscibility of polymers can only result from interactions between them leading to a negative contribution to the Gibbs free energy of mixing. In the case of homopolymers this is associated with specific interactions. The increase of the free-volume term with temperature results in a *LCST* which is typical for miscible polymers.

As shown recently⁴⁻⁷ blends in which at least one of the components is a random copolymer exhibit miscibility and *LCST* behaviour in the absence of specific interactions. In that case misciblity may be enhanced by the repulsion of dissimilar segments in the random copolymer chain^{4,5,8,9}.

Some miscible polymer blends display not only *LCST* behaviour but also phase separation at low temperatures. The simultaneous occurrence of a *LCST* as well as an upper critical solution temperature *(UCST)* in blends of high-molar-mass polymers is expected to be rare. Nevertheless, it is a general phenomenon. However, in most of the cases the *UCST* shifts below the glass transition temperature and, therefore, is not accessible experimentally.

The existence of both an *UCST* and *LCST* has been found in some blends of high-molar-mass polymers: poly- *(butadiene)/poly(styrene-co-butadiene) 1°,* poly(acrylo*nitrile_co.styrene)/poly(acrylonitrile_co.butadiene)11* and poly(methyl methacrylate)/poly(vinylidene fluoride)¹²; and also in blends of polystyrene and a random copolymer of carboxylated poly(2,6-dimethyl-1,4-phenylene oxide)¹³.

The theory sketched above cannot explain satisfactorily the combined occurrence of an *UCST* and *LCST.* In this paper we present a refined version of the Prigogine-Flory-Patterson theory^{2,14,15} which results in a straightforward interpretation of *UCST* and *LCST* behaviour.

^{*} To whom correspondence should be addressed

THE REFINED THEORY

In the usual version the theory explains the *LCST* behaviour of miscible polymers. The aim here is an adequate refinement of the theory to understand the fact that some blends exhibit additionally an *UCST.*

In the Prigogine theory¹⁴ the basic quantities characterizing the thermodynamic state of a system are the reduced temperature (\tilde{T}) , volume (\tilde{V}) and pressure (\tilde{P}) defined by:

$$
\widetilde{T} \equiv T/T^* \qquad \widetilde{V} \equiv V/V^* \qquad \widetilde{P} \equiv P/P^* \tag{4}
$$

where the starred quantities are constant reference parameters. Expressing the potential energy $\varepsilon(r')$ of a pair of segments belonging to r-mers by the general function ζ with two scale factors ε^* and r^* characteristic of the molecular species:

$$
\varepsilon(r') = -\varepsilon^* \zeta(r'/r^*) \tag{5}
$$

then we can represent the starred quantities in (4) by the molecular parameters as follows

$$
T^* = q\varepsilon^*/ck \qquad V^* = rr^{*3} \qquad P^* = q\varepsilon^*/rr^{*3} \qquad (6)
$$

The scale factors ε^* and r^* represent the coordinates of the minimum of the potential function $\varepsilon(r')$; r is the number of segments in a chain molecule; 3c is called the number of external degrees of freedom of an r-mer because it depends only on the environment of the chain. When z is the coordination number of the lattice then *qz* represents the number of the nearest neighbours of the *r*-mer or *zq*/*r* the nearest neighbours of a segment.

In generalization of (5) one may introduce the average interaction of a segment (say \overrightarrow{A}) with the neighbour segments at a distance r' for the mixture in terms of the volume fraction ϕ :

$$
\langle \varepsilon_A^* \rangle \zeta(r'/\langle r_A^* \rangle) = \phi_A \langle \varepsilon_{AA}^* \rangle \zeta(r'/\langle r_{AA}^* \rangle) + \phi_B \langle \varepsilon_{AB}^* \rangle \zeta(r'/\langle r_{AB}^* \rangle)
$$
\n(7)

As can be seen the interaction energy $\langle \varepsilon_A(r') \rangle$ is supposed to be of the same form as in (5). Henceforth, the quantities $\langle \varepsilon^* \rangle$ and $\langle r^* \rangle$ are average composition-dependent parameters. Using a (6-12) law for the potential function $\varepsilon(r')$ the parameters $\langle \varepsilon_A^* \rangle$ and $\langle r_A^* \rangle$ are given by:

$$
\langle \varepsilon_{\mathsf{A}}^* \rangle = \frac{(\phi_{\mathsf{A}} \langle \varepsilon_{\mathsf{A}\mathsf{A}}^* \rangle \langle r_{\mathsf{A}\mathsf{A}}^* \rangle^6 + \phi_{\mathsf{B}} \langle \varepsilon_{\mathsf{A}\mathsf{B}}^* \rangle \langle r_{\mathsf{A}\mathsf{B}}^* \rangle^6)^2}{\phi_{\mathsf{A}} \langle \varepsilon_{\mathsf{A}\mathsf{A}}^* \rangle \langle r_{\mathsf{A}\mathsf{A}}^* \rangle^{12} + \phi_{\mathsf{B}} \langle \varepsilon_{\mathsf{A}\mathsf{B}}^* \rangle \langle r_{\mathsf{A}\mathsf{B}}^* \rangle^{12}} \qquad (8)
$$

$$
\langle r_{\mathsf{A}}^* \rangle = \left(\frac{\phi_{\mathsf{A}} \langle r_{\mathsf{A}\mathsf{A}}^* \rangle^{12} + \phi_{\mathsf{B}} \langle r_{\mathsf{A}\mathsf{B}}^* \rangle^{12}}{\phi_{\mathsf{A}} \langle r_{\mathsf{A}\mathsf{A}}^* \rangle^6 + \phi_{\mathsf{B}} \langle r_{\mathsf{A}\mathsf{B}}^* \rangle^6} \right)^{1/6}
$$

Similar expressions exist for $\langle \varepsilon_{\rm B}^* \rangle$ and $\langle r_{\rm B}^* \rangle$. Assuming now that components A and B are random copolymers of monomers 1 and 2 and of 3 and 4, respectively, where α and β are the mole fractions of 1 in A and 3 in B, respectively, then it follows that:

$$
\langle \varepsilon_{AA}^* \rangle = \frac{\left[\alpha^2 \varepsilon_{11}^* r_{11}^* + 2\alpha (1 - \alpha) \varepsilon_{12}^* r_{12}^* + (1 - \alpha)^2 \varepsilon_{22}^* r_{22}^* \right]^2}{\alpha^2 \varepsilon_{11}^* r_{11}^{*12} + 2\alpha (1 - \alpha) \varepsilon_{12}^* r_{12}^{*22} + (1 - \alpha)^2 \varepsilon_{22}^* r_{22}^{*12}} \quad (9)
$$

$$
\langle r_{AA}^* \rangle = \left(\frac{\alpha^2 r_{11}^{*12} + 2\alpha (1 - \alpha) r_{12}^{*22} + (1 - \alpha)^2 r_{22}^{*22}}{\alpha^2 r_{11}^{*6} + 2\alpha (1 - \alpha) r_{12}^{*6} + (1 - \alpha)^2 r_{22}^{*6}} \right)^{1/6}
$$

with analogous expressions for $\langle \varepsilon_{BB}^* \rangle$ and $\langle r_{BB}^* \rangle$. Furthermore, we have:

$$
\langle \varepsilon_{AB}^* \rangle = \alpha \beta \varepsilon_{13}^* + (1 - \beta) \alpha \varepsilon_{14}^* + (1 - \alpha) \beta \varepsilon_{23}^* + (1 - \alpha)(1 - \beta) \varepsilon_{24}^* \tag{10}
$$

$$
\langle r_{AB}^* \rangle = \left(\frac{\alpha \beta r_{13}^{*12} + \cdots + (1-\alpha)(1-\beta)r_{24}^{*12}}{\alpha \beta r_{13}^{*6} + \cdots + (1-\alpha)(1-\beta)r_{24}^{*6}} \right)^{1/6}
$$

Now we may express the average potential parameters in terms of the quantities δ_i , δ'_i , χ_{ij} and R_{ij} as defined in the Appendix. Second-order terms are only taken into account for $\langle \varepsilon_{ii}^* \rangle$. After (9) and (10) it follows that:

$$
\langle \varepsilon_{\mathbf{A}\mathbf{A}}^* \rangle / \varepsilon_{11}^* = 1 + \varepsilon \qquad \langle r_{\mathbf{A}\mathbf{A}}^* \rangle / r_{11}^* = 1 + \rho_{\mathbf{A}} \qquad (11)
$$

$$
\langle \varepsilon_{\mathsf{BB}}^* \rangle / \varepsilon_{11}^* = 1 + \eta \qquad \langle r_{\mathsf{BB}}^* \rangle / r_{11}^* = 1 + \rho_{\mathsf{B}} \qquad (12)
$$

$$
X_{AB} = \lambda/(1+\varepsilon) \tag{13}
$$

Again, the quantities ε , η , ρ_A and ρ_B are defined in the Appendix. According to (8) it follows for $\langle \varepsilon_A^* \rangle$, $\langle \varepsilon_A^* \rangle$, $\langle \varepsilon_B^* \rangle$ and $\langle r_{\rm B}^* \rangle$ that:

$$
\langle \varepsilon_{\mathbf{A}}^* \rangle / \varepsilon_{11}^* = 1 + (\phi_{\mathbf{B}}/2) \Gamma - \phi_{\mathbf{B}} X_{\mathbf{A}\mathbf{B}} - 9 \rho^2 \phi_{\mathbf{A}} \phi_{\mathbf{B}} \tag{14}
$$

$$
\langle r_{\rm A}^* \rangle / r_{11}^* = 1 + (\rho_{\rm A}/2)(1 + \phi_{\rm A}) + (\rho_{\rm B}/2)\phi_{\rm B} + K\phi_{\rm B} \quad (15)
$$

$$
\langle \varepsilon_{\mathbf{B}}^{*} \rangle / \varepsilon_{11}^{*} = 1 + (\phi_{\mathbf{B}} + \phi_{\mathbf{A}}/2) \Gamma - \phi_{\mathbf{A}} X_{\mathbf{A}\mathbf{B}} - 9 \rho^{2} \phi_{\mathbf{A}} \phi_{\mathbf{B}} \tag{16}
$$

$$
\langle r_{\rm B}^* \rangle / r_{11}^* = 1 + (\rho_{\rm A}/2) \phi_{\rm A} + (\rho_{\rm B}/2)(1 + \phi_{\rm B}) + K \phi_{\rm A} \tag{17}
$$

with

$$
\Gamma \equiv (\eta - \varepsilon)/(1 + \varepsilon) \tag{14a}
$$

$$
\rho \equiv \rho_B - \rho_A + 2\beta (1 - \beta) R_{34} - 2\alpha (1 - \alpha) R_{12} \tag{14b}
$$

$$
K \equiv \alpha (1 - \alpha) R_{12} + \beta (1 - \beta) R_{34} - \alpha \beta R_{13} - \alpha (1 - \beta) R_{14}
$$

-(1 - \alpha)\beta R_{23} - (1 - \alpha)(1 - \beta) R_{24} (15a)

In the context of the Prigogine theory and assuming random mixing, the configurational partition function of the mixture takes the form:

$$
Q = \frac{(N_A + N_B)!}{N_A! N_B!} \left[\langle r_A^* \rangle^3 q(\langle \widetilde{T}_A \rangle, \langle \widetilde{V}_A \rangle) \right]^{c_A r_A N_A}
$$

× $\left[\langle r_B^* \rangle^3 q(\langle \widetilde{T}_B \rangle, \langle \widetilde{V}_B \rangle) \right]^{c_B r_B N_B}$ (18)

where N_A , N_B are the numbers of polymer molecules in the system and q represents the partition function for a segment. The Helmholtz free energy of mixing per mole of segments is:

$$
\Delta F^{\mathbf{M}} = F - (\phi_{\mathbf{A}} F_{\mathbf{A}} + \phi_{\mathbf{B}} F_{\mathbf{B}})
$$
(19)

From (18) one can deduce the free energy of mixing. Omitting for a moment the combinatorial entropy of mixing, it follows that:

$$
\Delta F^{\mathbf{M}}/RT = -\sum_{i = \mathbf{A}, \mathbf{B}} \{3c_i \phi_i \ln(\langle r_i^* \rangle / \langle r_{ii}^* \rangle) + c_i \phi_i [\ln q(\langle \tilde{T}_i \rangle, \langle \tilde{V}_i \rangle) - \ln q(\langle \tilde{T}_{ii} \rangle, \langle \tilde{V}_{ii} \rangle)] \} \quad (20)
$$

Now we may expand (20) in powers of $1/\langle \tilde{T} \rangle$ and $\langle \tilde{V} \rangle$ around ln $q(\langle T_{AA} \rangle, \langle V_{AA} \rangle)$ at $P=0$. In the following we neglect structural effects, i.e. $c_A = c_B$ and $q_A = q_B$. After some calculation we arrive at:

$$
\frac{\Delta F^{\mathsf{M}}}{RT} = \frac{\Delta G^{\mathsf{M}}}{RT} = \frac{U_{\mathsf{A}}}{RT} \left[\phi_{\mathsf{A}} \theta_{\mathsf{A}} + \phi_{\mathsf{B}} \theta_{\mathsf{B}} - \phi_{\mathsf{B}} \left(\frac{\langle \varepsilon_{\mathsf{B}}^* \rangle}{\langle \varepsilon_{\mathsf{A}}^* \rangle} - 1 \right) \right]
$$

$$
- \frac{C_{\mathsf{V}\mathsf{A}}}{2R} \left[\phi_{\mathsf{A}} \theta_{\mathsf{A}}^2 + \phi_{\mathsf{B}} \theta_{\mathsf{B}}^2 - \phi_{\mathsf{B}} \left(\frac{\langle \varepsilon_{\mathsf{B}}^* \rangle}{\langle \varepsilon_{\mathsf{A}}^* \rangle} - 1 \right)^2 \right]
$$

$$
+ c_{\mathsf{A}} \left(\frac{\partial \tilde{P}}{\partial \tilde{T}} \right)_{\mathsf{A}} \left[\phi_{\mathsf{A}} \theta_{\mathsf{A}} \Omega_{\mathsf{A}} + \phi_{\mathsf{B}} \theta_{\mathsf{B}} \Omega_{\mathsf{B}} - \phi_{\mathsf{B}} \left(\frac{\langle \varepsilon_{\mathsf{B}}^* \rangle}{\langle \varepsilon_{\mathsf{A}}^* \rangle} - 1 \right) \right]
$$

$$
\times (\langle \tilde{V}_{\mathsf{B}\mathsf{B}} \rangle - \langle \tilde{V}_{\mathsf{A}\mathsf{A}} \rangle) \right]
$$

$$
-\frac{1}{2\langle\tilde{T}_{AA}\rangle}c_{A}\left(\frac{\partial P}{\partial \tilde{V}}\right)_{A}[\phi_{A}\Omega_{A}^{2}+\phi_{B}\Omega_{B}^{2}-\phi_{B}(\langle\tilde{V}_{BB}\rangle-\langle\tilde{V}_{AA}\rangle)^{2}]-3c_{A}\left[\phi_{A}\ln\left(\frac{\langle r_{A}^{*}\rangle}{\langle r_{AA}^{*}\rangle}\right)+\phi_{B}\ln\left(\frac{\langle r_{B}^{*}\rangle}{\langle r_{BB}^{*}\rangle}\right)\right]
$$
(21)

where

$$
\theta_i \!\equiv\!\! \left(\!\frac{\langle \varepsilon_i^* \rangle}{\langle \varepsilon_{ii}^* \rangle} \!-\! 1 \right) \qquad \Omega_i \!\equiv\! (\langle \tilde{V}_i \rangle - \langle \tilde{V}_{ii} \rangle)
$$

The molar configurational energy U_A , the heat capacity C_{VA} and the other quantities occurring in (21) can be replaced by the reduced volume and equation-of-state parameters using a suitable equation of state. According to Flory¹⁵ the quantities V, T, P are linked by the following equation of state:

$$
\widetilde{P} = \frac{\widetilde{T}\widetilde{V}^{-2/3}}{\widetilde{V}^{1/3} - 1} - \frac{1}{\widetilde{V}^2}
$$
\n(22)

At $\tilde{P} = 0$, it follows that:

$$
\widetilde{T} = \frac{\widetilde{V}^{1/3} - 1}{\widetilde{V}^{4/3}}\tag{22a}
$$

Employing

$$
c\frac{\partial \ln q}{\partial \tilde{V}} = \frac{PV^*}{RT} \quad \text{and} \quad c\tilde{T}\frac{\partial \ln q}{\partial \tilde{T}} = \frac{U}{RT}
$$

one obtains

$$
-\frac{U_{\rm A}}{RT} = c_{\rm A} \frac{1}{\tilde{T}_{\rm A} \tilde{V}_{\rm A}} \qquad \frac{C_{\rm VA}}{R} = c_{\rm A} \frac{\tilde{V}_{\rm A}^{1/3}}{\frac{4}{3} - \tilde{V}_{\rm A}^{1/3}} \tag{23}
$$

The calculation of $\partial \tilde{P}/\partial \tilde{T}$ and $\partial \tilde{P}/\partial \tilde{V}$ is straightforward. From (20) an equation of state can be deduced. Expanding this equation of state in terms of pure component A at $\tilde{P}=0$ one can calculate the quantities Ω_i occurring in (21). It follows:

$$
\Omega_{\mathbf{A}} = \frac{\tilde{V}_{\mathbf{A}}(\tilde{V}_{\mathbf{A}}^{1/3} - 1)}{\frac{4}{3} - \tilde{V}_{\mathbf{A}}^{1/3}} \sum_{i = \mathbf{A}, \mathbf{B}} \phi_{i} \theta_{i} + c_{\mathbf{B}} \phi_{\mathbf{B}} \tilde{V}_{\mathbf{A}} \left(\frac{\langle r_{\mathbf{B}}^{*} \rangle^{3}}{\langle r_{\mathbf{A}}^{*} \rangle^{3}} - 1 \right)
$$
\n
$$
\Omega_{\mathbf{B}} = \frac{\tilde{V}_{\mathbf{A}}(\tilde{V}_{\mathbf{A}}^{1/3} - 1)}{\frac{4}{3} - \tilde{V}_{\mathbf{A}}^{1/3}} \sum_{i = \mathbf{A}, \mathbf{B}} \phi_{i} \theta_{i} - c_{\mathbf{A}} \phi_{\mathbf{A}} \tilde{V}_{\mathbf{A}} \left(\frac{\langle r_{\mathbf{B}}^{*} \rangle^{3}}{\langle r_{\mathbf{A}}^{*} \rangle^{3}} - 1 \right) \tag{24}
$$
\n
$$
\langle \tilde{V}_{\mathbf{B}\mathbf{B}} \rangle - \langle \tilde{V}_{\mathbf{A}\mathbf{A}} \rangle = \frac{\tilde{V}_{\mathbf{A}}(\tilde{V}_{\mathbf{A}}^{1/3} - 1)}{\frac{4}{3} - \tilde{V}_{\mathbf{A}}^{1/3}} \left(\frac{\langle \varepsilon_{\mathbf{B}\mathbf{B}}^{*} \rangle}{\langle \varepsilon_{\mathbf{A}\mathbf{A}}^{*} \rangle} - 1 \right)
$$

Finally, inserting the expressions (14) – (17) and (23) , (24) into (21), neglecting higher than second-order terms in X_{AB} , Γ and ρ and adding the combinatorial entropy of mixing one gets for the Gibbs free energy of mixing:

$$
\Delta G^{M} = 2c_{A}\phi_{A}\phi_{B}
$$
\n
$$
\times \left(\frac{\tilde{V}_{A/3}^{1/3}}{\tilde{V}^{1/3} - 1} \left\{X_{AB} + \frac{9}{2}\rho^{2} - \frac{1}{2}[\Gamma/2 + X_{AB}(\phi_{B} - \phi_{A})]\right\}\right.
$$
\n
$$
\times \left[\frac{3}{2}(\rho_{B} - \rho_{A}) - 3K(\phi_{B} - \phi_{A})\right] \right\}
$$
\n
$$
+ \frac{\tilde{V}_{A/3}^{1/3}(\frac{4}{3} - \tilde{V}_{A}^{1/3})}{(\tilde{V}_{A}/3 - 1)^{2}} \frac{9}{16}[(\rho_{B} - \rho_{A}) - 2K(\phi_{B} - \phi_{A})]^{2}
$$

890 POLYMER, 1989, Vol 30, May

$$
+\frac{\tilde{V}_{\mathbf{A}}^{1/3}}{4(\frac{4}{3}-\tilde{V}_{\mathbf{A}}^{1/3})} \left[\frac{7}{4}\Gamma^2 + \Gamma X_{\mathbf{AB}}(1+6\phi_{\mathbf{B}}) -X_{\mathbf{AB}}^2(1+4\phi_{\mathbf{A}}\phi_{\mathbf{B}})\right]
$$

$$
-3[K - \frac{1}{16}(\rho_{\mathbf{B}} - \rho_{\mathbf{A}})^2 - \frac{1}{4}K(\rho_{\mathbf{B}} - \rho_{\mathbf{A}}) + (\phi_{\mathbf{A}}/r_{\mathbf{A}}) \ln \phi_{\mathbf{A}} + (\phi_{\mathbf{B}}/r_{\mathbf{B}}) \ln \phi_{\mathbf{B}}]
$$
(25)

To a good approximation one can assume that the quantities R_{ij} vanish. Furthermore, with an inaccuracy of less than 1% one can neglect the second-order terms in $X_{AB}\rho$, $X_{AB}\Gamma$ and X_{AB}^2 . As a result (25) simplifies to:

$$
\frac{\Delta G^{M}}{RT} = 2c_A \phi_A \phi_B \left[\frac{\tilde{V}_A^{1/3}}{\tilde{V}_A^{1/3} - 1} \left(X_{AB}^T + \frac{\frac{4}{3} - \tilde{V}_A^{1/3}}{\tilde{V}_A^{1/3} - 1} \frac{9}{16} \rho^2 \right) + \frac{\tilde{V}_A^{1/3}}{\frac{4}{3} - \tilde{V}_A^{1/3}} \frac{7}{16} \Gamma^2 \right] + (\phi_A / r_A) \ln \phi_A + (\phi_B / r_B) \ln \phi_B
$$
 (26)

where

$$
X_{AB}^{T} \equiv X_{AB} + \frac{9}{2}\rho^2 - \frac{3}{8}\Gamma\rho
$$
 (26a)

Figure 1 Variation of the interaction (1), free-volume (2) and sizeeffect (3) contributions to the parameter X (4) as a function of reduced temperature according to equation (26). The used parameters are:
 $X_{AB}^{\dagger} = -1 \times 10^{-4}$, $\Gamma^2 = 6 \times 10^{-4}$, $\rho^2 = 3 \times 10^{-5}$. The combinatorial entropy of mixing at $\phi = 0.5$ and $r = 1000$ is indicated by the broken straight line

DISCUSSION

In equation (26) a generalized interaction parameter X is defined via

$$
\Delta G^{\mathsf{M}}/RT = \phi_{\mathsf{A}}\phi_{\mathsf{B}}X + (\phi_{\mathsf{A}}/r_{\mathsf{A}})\ln \phi_{\mathsf{A}} + (\phi_{\mathsf{B}}/r_{\mathsf{B}})\ln \phi_{\mathsf{B}}
$$

As can be seen, three effects contribute to the interaction parameter X : (i) the segmental interaction represented by the parameter X_{AB} ; (ii) the free-volume effect arising from the different free volumes of the components and represented by the parameter Γ ; (iii) the size effect resulting from the differences in the sizes of the segments and represented by the parameter ρ . We should notice here that the volume of mixing calculated in the same approximation as the Gibbs free energy of equation (26) also depends on the parameters X_{AB} , Γ and ρ . When there is no size effect, i.e. $\rho = 0$, and $X_{AB} < 0$, $\Gamma > 0$, then the volume of mixing $\Delta V^{\rm M}$ is negative. With increasing ρ the sign of ΔV^M will change whereas ΔG^M keeps the same sign. The three contributions as a function of reduced temperature are shown in *Figure 1*. Since X_{AB} is negative the interaction term is also negative and favours mixing. However, it dominates the unfavourable free-volume and size-effect terms only within a certain range of temperatures. Therefore, *LCST* as well as *UCST* occur.

From equation (26) it follows that the parameter X is a free-energy parameter containing an enthalpic part *X n* and an entropic part X_s :

$$
X = X_H + X_S \qquad X_H = -T \partial X / \partial T \tag{27}
$$

Figure 2 Representation of the parameter X and its enthalpic and entropic parts, X_H and X_S , respectively, *versus* reduced temperature as calculated from equations (27) and (28). The parameters are chosen as in *Figure I*

Figure 3 Binodals as calculated from equation (26). The parameters are: $\rho = 0$ (0), $\rho^2 = 1 \times 10^{-5}$ (1), $\rho^2 = 2 \times 10^{-5}$ (2), $\rho^2 = 3 \times 10^{-5}$ (3), ρ^2 =3.1 × 10⁻⁵ (4); c_A =2; other parameters as in *Figure 1*

Applying equation (26) we get

$$
\frac{X_H}{2c_A} = \frac{\tilde{V}_{A}^{1/3}}{(\frac{4}{3} - \tilde{V}_{A}^{1/3})(\tilde{V}_{A}^{1/3} - 1)} \frac{X_{AB}^{\mathsf{T}}}{3} + \frac{(2 - \tilde{V}_{A}^{1/3})\tilde{V}_{A}^{1/3}}{(\frac{4}{3} - \tilde{V}_{A}^{1/3})(\tilde{V}_{A}^{1/3} - 1)^2} \frac{\rho^2}{8}
$$

$$
- \frac{(\tilde{V}_{A}^{1/3} - 1)\tilde{V}_{A}^{1/3}}{(\frac{4}{3} - \tilde{V}_{A}^{1/3})^3} \frac{7}{12} \Gamma^2
$$
(28)

Notice that $X_H \sim \Delta H^M$ and $X_S \sim -\Delta S^M$. The variation of the different terms with respect to reduced temperature is depicted in *Figure 2.* At high temperatures the temperature dependence of X_H and X_S is approximately the same as at $\rho = 0^9$. At low temperatures, however, a completely different behaviour occurs for $\rho \neq 0$. At $\rho = 0$, X_H decreases with decreasing temperature and approaches X whereas X_S levels off to a small positive value. Here, X_H increases because the term is proportional to ρ^2 , which acts as an additional repulsion at low temperatures, leading to an increase of the parameter X . As a result, the *LCS T* behaviour is an entropy-driven process whereas the *UCST* is caused by the enthalpic contribution associated with the size effect.

Figure 4 Miscibility map of a homopolymer/copolymer blend $(\alpha = 1)$ **as** calculated by employing equation (26). The used parameters **arc:** $\chi_{13} = 9.6 \times 10^{-3}$, $\chi_{14} = 0.03$, $\chi_{34} = 0.08$; $\delta_3 = \delta_4 = 0.065$; $\delta_3' = \delta_4' = 5.5 \times 10^{-3}$; $c_A = 2$; $r = 1000$; $\phi = 0.5$. Miscibility occurs only inside the curve

Now, phase diagrams can be deduced from the Gibbs free energy of mixing (equation (26)). Results are shown in *Figure 3.* As can be seen the phase behaviour varies dramatically with the size parameter ρ . At $\rho = 0$ only *LCST* behaviour occurs. With increasing ρ the gap between *LCST* and *UCST* diminishes more and more; finally, an hourglass-shaped phase diagram results. Remarkably, extremely small changes in the parameter p alter the phase behaviour from *UCST/LCST* behaviour to immiscibility, as is demonstrated by curves 3 and 4 in *Figure 3.* Furthermore, one may establish that simultaneously experimentally accessible *LCST* and *UCST* in one system are rare because the position of the binodals is very sensitive to the ratios ρ^2/X_{AB} , ρ/Γ and X_{AB}/Γ^2 and, as indicated above, small changes in the ratios can shift the *UCS T* far below the glass transition temperature.

The same treatment may also be used to account for miscibility and *LCST/UCST* behaviour in blends containing random copolymers. As a matter of fact, the positions of *LCST* and *UCST* depend highly on the copolymer composition. Therefore, for blends containing copolymers of varying composition, one observes different binodals. The binodals may be employed to map the miscibility in copolymer/homopolymer blends at constant

blend composition as a function of copolymer composition. An example for a $T-\beta$ plot as calculated on the basis of equation (26) is shown in *Figure 4.* Miscibility is confined to a certain region of copolymer composition. We should notice here that the experimental observation of miscibility-immiscibility boundaries as a function of copolymer composition permits the quantitative determination of the individual segmental parameters occurring in equations $(A6)$ – $(A10)$.

In conclusion, the simultaneous occurrence of a *LCST* and an *UCST* is associated with positive contributions to the Gibbs free energy of mixing due to the free-volume effect and the differences in segmental sizes, respectively, whereby the latter effect is most striking at low temperatures. When the size effect is negligible only *LCST* behaviour is experimentally observable. The complex phase behaviour of polymer blends can be explained satisfactorily in terms of a refined equation-of-state theory.

REFERENCES

-
- 1 McMaster, L. P. *Macromolecules* 1973, 4, 760
- 2 Patterson, D. and Robard, A. *Macromolecules* 1978, 11, 690
Flory, P. J. 'Principles of Polymer Chemistry', Cornell Universi 3 Flory, P. J. 'Principles of Polymer Chemistry', Cornell University Press, Ithaca, NY, 1953
- 4 Kambour, R. P., Bendler, J. T. and Bopp, R. C. *Macromolecules* 1983, 16, 753
- 5 Ten Brinke, G., Karasz, F. E. and McKnight, W. J. *Macromolecules* 1983, 16, 1827
- 6 Karasz, F. E. *Adv. Chem. Ser.* 1986, 211, 67
- 7 Suess, M., Kressler, J. and Kammer, H. W. *Polymer* 1987, 28, 957
- 8 Paul, D. R. and Barlow, J. W. *Polymer* 1984, 25, 487
- 9 Kammer, H. W. *Acta Polym.* 1986, 37, 1
- 10 Ougizawa, T., Inoue, T. and Kammer, H. W. *Macromolecules* 1985, 18, 2089
- 11 Ougizawa, T. and Inoue, T. *Polym. J.* 1986, 18, 521
12 Saito, H., Fuiita, Y. and Inoue, T. *Polym. J.* 1987, 1
- 12 Saito, H., Fujita, Y. and Inoue, T. *Polym. J.* 1987, 19, 405
13 Cong, G., Huang, Y., McKnight, W. J. and Karasz, F.
- 13 Cong, G., Huang, Y., McKnight, W. J. and Karasz, F. E. *Macromolecules* 1986, 19, 2765
- 14 Prigogine, I. 'The Molecular Theory of Solutions', North-Holland, Amsterdam, 1957
- 15 Flory, P. J. *Disc. Faraday Soc.* 1970, 49, 7

APPENDIX

It is useful to introduce the following notations:

$$
\delta_i = \varepsilon_{ii}^* / \varepsilon_{11}^* - 1
$$
\n
$$
\varepsilon_{ii}^* / \varepsilon_{11}^* - 1
$$
\n
$$
\varepsilon_{ii}^* / \varepsilon_{11}^* - 1
$$
\n
$$
\varepsilon_{ii}^* / \varepsilon_{11}^* - 1
$$
\n(A1)

$$
\delta_i^r = r_{ii}^* / r_{11}^* - 1 \tag{A2}
$$

$$
\chi_{ij} = (1/\varepsilon_{11}^*)[\frac{1}{2}(\varepsilon_{ii}^* + \varepsilon_{jj}^*) - \varepsilon_{ij}^*] \qquad i \neq j; \frac{i = 1, 2, 3}{j = 2, 3, 4} \text{ (A3)}
$$

$$
R_{ij} = (1/r_{11}^*)[\frac{1}{2}(r_{ii}^* + r_{jj}^*) - r_{ij}^*]
$$
 (A4)

$$
X_{AB} = (1/\langle \varepsilon_{AA}^* \rangle)[\frac{1}{2}(\langle \varepsilon_{AA}^* \rangle + \langle \varepsilon_{BB}^* \rangle) - \langle \varepsilon_{AB}^* \rangle] \quad (A5)
$$

Furthermore:

$$
\varepsilon = (1 - \alpha)\delta_2 - 2\alpha(1 - \alpha)\chi_{12} - 18\alpha(1 - \alpha)(\delta_2^r)^2 \quad (A6)
$$

$$
\rho_A = (1 - \alpha)\delta_2' - 2\alpha(1 - \alpha)R_{12} \tag{A7}
$$

$$
\eta = \beta \delta_3 + (1 - \beta)\delta_4 - 2\beta(1 - \beta)\chi_{34} - 18\beta(1 - \beta)(\delta_3' + \delta_4'')^2
$$
\n(A8)

$$
\rho_B = \beta \delta_3' + (1 - \beta)\delta_4' - 2\beta(1 - \beta)R_{34} \tag{A9}
$$

$$
\lambda = \alpha \beta \chi_{13} + \alpha (1 - \beta) \chi_{14} + (1 - \alpha) \beta \chi_{23} + (1 - \alpha) (1 - \beta) \chi_{24} -\alpha (1 - \alpha) \chi_{12} - \beta (1 - \beta) \chi_{34}
$$
 (A10)